Default
Question
Find the shortest distance between the lines
→r = ˆi+2ˆj+ˆk+λ(ˆi−ˆj+ˆk)
→r = 2ˆi−ˆj−ˆk+μ(2ˆi+ˆj+2ˆk)
Solution
The correct answer is 3√2
Explanation
Here,
→a1 = ˆi+2ˆj+ˆk, →b1 = ˆi−ˆj+ˆk
→a2 = 2ˆi−ˆj−ˆk, →b2 = 2ˆi+ˆj+2ˆk
∴ →a2 - →a1 = ˆi−3ˆj−2ˆk
→b1 x →b2 =
|ˆi−ˆj−ˆk1−−1−12−1−2| = −3ˆi+3ˆk
∴ |→b1 x →b2| = √9+9 = 3√2
∴ The shortest distance between the given lines is
d = |(→b1x→b2).(→a2−→a1)|→b1x→b2||
= |−3−6|3√2
= 3√2
2f26a3ef-75ce-11ed-94f3-5405dbb1cb03